

Systems modeling and optimization of the coupled wind turbine-electrolyzer system

Tobias Meyer Fraunhofer-Institute for Wind Energy Systems tobias.meyer@iwes.fraunhofer.de

IWES simulation and digitalization works in H2Mare

		Koordinatio	H ₂ M on: Siemens Energy z	lare cusammen mit Fraunt	nofer IWES				
	Verbundprojekt 3: TransferWind								
cruh	21	BAM	DECHEMA	DFI	DVGW	EUCC – Die Küsten Union			
Fraunt	nofer emy	Fraunhofer IMWS	Fraunhofer IWES	Hochschule Wismar	Helmholtz- Zentrum Hereon	INERATEC			
КІТ ІМ	IVT	Siemens Energy	Siemens Gamesa	Stiftung Offshore Wind (SOW)	Uni Stuttgart IER	TU Berlin EBMS			
Verbu	Verbundprojekt 1: H ₂ Wind		Verbundprojekt 2: PtX-Wind						
Fraunhofe	er IMWS	Leibniz Uni Hannover	BAM	EnviroChemie	KIT IMVT	TU Berlin TC			
Fraunhof	er IWES	FUMATECH Salzgitter Mannesmann	DFI	HZG GERICS	KIT EBI	TU Berlin EBMS			
			DECHEMA	HZG PM	MPI Magdeburg	Uni Stuttgart IER			
Fraunhot	er IWM		DLR	HZG KS	Northland Power	Uni Stuttgart IAS			
Fraunhol	fer IWU	Siemens Energy	DVGW	HZG KU	Siemens Gamesa	WindMW			
Fraunho	fer ICT	Fraunhofer IGB	EnBW	INERATEC	thyssenkrupp				
Verbundprojekt 0: OffgridWind Fraunhofer ICT Fraunhofer IWES Reuther STC RWE Renewables Siemens Gamesa									
	Verbund-Ko	ordinator	assoziierte Pa	artner					
Contents of this talk are mainly one piece									
of the entire H2Mare project house!									

Leitprojekt

H₂Mare

Fraunhofer

IWES

© Siemens Gamesa Renewable Energy

Wind turbine evolution

© Siemens Gamesa Renewable Energy

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Bundesministerium

Our challenges

- "We need to **predict the functionality** of a hydrogen-producing wind farm!
- **Safety of hydrogen-producing turbines** must be ascertained!
- [¬] Hydrogen-producing wind turbines require new **concepts for optimal operation!**
- → We're building a **dedicated simulation tool for large modular systems** to tackle these challenges!

© Siemens Gamesa Renewable Energy

Concept of simulation platform

GEFÖRDERT VOM

Concept of simulation platform

Provide components models for database

Combination of multiple systems into one simulation model

System simulation and analysis

Bundesministerium

Provide components models for database

Component models are implemented in diverse simulation tools

Fraunhofer

Leitproiekt

- [¬] Standardized means for interconnection is required
- FMU is a platform-independent exchange format for simulation models
- [¬] Almost every modelling tool exports to FMU
- [¬] Co-Simulation is used to combine component models

FMU is suitable to equip our existing component models with a common interface for system simulation

Bundesministerium

Library of IWES component models

→IWES component models cover the whole spectrum of wind energy conversion

GEFÖRDERT VOM

- [¬] User represents system structure
- [¬] Components are combined like puzzle pieces
 - [¬] Mindset in simulation platform: **Think of Energy flow**
- Pre-defined connectors are implemented in each component model
- [¬] Details of interconnections are not considered yet

Accessible means for modeling a complex system

GEFÖRDERT VON

GEFÖRDERT VOM

- System structure and meta-information are combined
- Meta-information is processed from ontology
- Full system model is packaged and augmented with simulation information
- All information required for a simulation is packaged independently

Simulation Case

_{GEFÖRDERT VOM} Bundesministerium

für Bildung und Forschung

- "Simulation results are returned and then?
- [¬] Multiple simulations can be run in parallel
- [¬] Highly scalable

Structured solution for many simulations

•••

GEFÖRDERT VOM

Bundesministerium

System simulation and analysis

Scenario simulations	Monte Carlo Simulations	Optimization	Stability
"Simulate a wind turbine for wind speeds 2,4,6,16 m/s and turbulance intensity 10% 20% "	"How does an uncertain parameter affect system	"Find operating parameters that yield minimum cost."	"Does a wind farm work as a full system?"
 Deterministic parameter variations 	 Stochastic parameter variations 	 Automatic parameter variations Permanent evaluation of results 	Functional Safety
 Manual or specific evaluation of results 	 Automatic post-processing of results 		"Is the turbine safe?"
→ → →	→ →	→ →	
→ →	→ →	→ →	Economic feasibility
Configuration Simulation Evaluation	Configuration Simulation Evaluation	Configuration Simulation Evaluation	"Is this a business case?"

 \rightarrow Multiple methods for configuration, simulation and evaluation allow for flexible usage

H2Mare use case: Operational optimization

- [¬]Goal: Maximize revenue from existing components
- [¬]Approach: Model-based optimization for all operating conditions over full lifetime

Challenge: Aging of electrolyzer components must be taken into account
 Result: Planned operation of all turbines for entire lifetime

GEFÖRDERT VOM

H2Mare use case: Operational optimization

Leitprojekt

Fraunhofer

Only the combination of multiple models allows for computation of trade-off between energy and damage

Clever planning of operation can yield large increase in lifetime and revenue

H2Mare use case: Functional safety

- Goal: Ensure safety requirements are met
- Approach: Simulation of error in system and evaluation of system behavior
- [¬] Errors can be mitigated if taken into account
- Errors combined with critical conditions might lead to systematic failures
- To reliably detect systematic errors, deviations from the ideal operating conditions have to be taken into account
- [¬] To achieve this, SimDetect uses a Monte-Carlo approach
- Challenge: Complex system with non-intuitive interconnections
 Result: Failure probability is determined

Modeling and optimizing the coupled wind turbine-electrolyzer system | Tobias Meyer

This is work by Fabian Frank @ Fh ICT

für Bildung und Forschung

Bundesministerium

GEFÖRDERT VOM

H2Mare use case: Functional safety Computed from desired Safety Integrity Level (SIL) Failure probability below acceptable limit Required simulation time is reached **Procedural Test Generator Limit Monitor** Generates inputs that (Safety) Programmable Checks for violation of Logic Controller coupled to simulate deviation (e.g. limits, i.e. presence of human input, weather **Process simulation** systematic error conditions...) Safe limit exceeded STOP during simulation Systematic error detected

Requires detailed model of the entire system

Probability of failure due to systematic error can be determined

This is work by Fabian Frank @ Fh ICT

Bundesministerium

H2Mare use case: Simulation as basis for a digital twin

Digital twins...

- [¬] require bidirectional communication
- [¬] model follows measurement data
- [¬] insights from the model are fed back into the system
- [¬] cover entire operational lifetime
- [¬] Use-cases are e.g.
 - Fatigue tracking: "How much usable lifetime is left?"
 - ¬ Event simulation for fault diagnosis: "What went wrong?"
 - ¬ Pre-evaluation of critical operations: "Can we do this?"

© Siemens Gamesa Renewable Energy

System simulation and analysi

GEFÖRDERT VON

To sum up...

- Hydrogen-producing H2Mare turbine poses unique challenges
- [¬] Sophisticated system optimization required
- Development of simulation platform for systems simulation, optimization and analysis
- [¬] Use case: Operational optimization
- [¬] Use case: Functional safety
- [¬] Use case: Digital twin
- Dedicated simulation tool allows detailed model-based system optimization
- Only with full system analysis and optimization, technology equity can be reached

Bundesministerium für Bildung und Forschung

Thank you for your attention

Tobias Meyer, Fraunhofer-Institute for Wind Energy Systems

tobias.meyer@iwes.fraunhofer.de