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Abstract: Intelligent mechatronic systems offer the possibility to adapt system behavior to
current dependability. This can be used to assure reliability by controlling system behavior
to reach a pre-defined lifetime. By using such closed loop control, the margin of error of
useful lifetime of an individual system is lowered. It is also possible to change the pre-defined
lifetime during operation, by adapting system behavior to derate component usage. When
planning maintenance actions, the remaining useful lifetime of each individual system has to be
taken into account. Usually, stochastic properties of a fleet of systems are analyzed to create
maintenance plans. Among these, the main factor is the probability of an individual system
to last until maintenance. If condition-based maintenance is used, this is updated for each
individual system using available information about its current state. By lowering the margin
of error of useful lifetime, which directly corresponds to the time until maintenance, extended
maintenance periods are made possible. Also using reliability-adaptive operation, a reversal of
degradation driven maintenance planning is possible where a maintenance plan is setup not only
according to system properties, but mainly to requirements imposed by maintenance personnel
or infrastructure. Each system then adapts its behavior accordingly and fails according to the
maintenance plan, making better use of maintenance personnel and system capabilities at the
same time. In this contribution, the potential of maintenance plan driven system behavior
adaptation is shown. A model including adaptation process and maintenance actions is simulated
over full system lifetime to assess the advantages gained.

Keywords: Adaptive systems, Reliability analysis, Availability, Adaptive control, Maintenance,
Self-optimizing systems, Self-optimizing control, Stochastic Petri-nets

1. INTRODUCTION

Availability is the key to cost efficient operation of fleets of
systems. To achieve good availability, maintenance has to
be scheduled such that usable lifetime is maximized, while
unexpected failures are avoided. Unexpected failures not
only inhibit system usage, they also severely compromise
efficiency of maintenance itself. The system might have to
be recovered and repair teams might be busy, both con-
tributing to long maintenance times. However, unexpected
failures can occur at any time, necessitating a probabilistic
approach to maintenance planning. A trade-off between
the probability of an unexpected failure, usable lifetime
before maintenance and the number of repair teams has
to be found.

While this is purely reacting to degradation, reliability-
adaptive systems offer the possibility to adapt system
behavior to its degradation in order to reach pre-defined
maintenance intervals. This way, maintenance can be
planned according to system usage requirements or the
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availability of repair teams, implicitly taking system degra-
dation into account.

In the remainder of this paper, state of the art maintenance
strategies are discussed in Sect. 2. Afterwards, one possible
implementation of such reliability-adaptive system behav-
ior (Sect. 3) is introduced before appyling this approach to
a clutch system as example system (Sect. 4). Sect. 5 goes
into details about the reliability of this clutch system, be-
fore Sect. 6 introduces a Petri-net used to evaluate system
reliability over long time spans and availability of a fleet
of systems. Since this is limited and only partially suitable
for reliability-adaptive systems, a more complex lifetime
simulation model is introduced in Sect. 7. The results of
these models and ideas for further work are discussed in
Sect. 8. The paper ends with a brief Conclusion in Sect. 9.

2. MAINTENANCE STRATEGIES

In order to keep availability high while keeping the number
of unexpected failures low, system usage and maintenance
have to be taken into account simultaneously. A simple
approach that can be considered to be common knowledge
is to use condition based maintenance by assessing the cur-
rent condition of the system and conducting maintenance
if necessary. This increases mean time to failure by schedul-
ing maintenance as late as current system degradation al-
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lows, without impairing availability by scheduling mainte-
nance early enough to avoid unexpected failures. However,
maintenance scheduling becomes even more complex than
for traditional time- or usage-based maintenance, since
spontaneous reactions might be required.

In Cassady and Kutanoglu (2005), an integrated approach
for planning maintenance actions of production equipment
and production scheduling is presented. While this takes
two main parameters of system availability into account,
increasing lifetime of production equipment e.g. by der-
ating is not considered. Taking this one step further is
Aravinthan and Jewell (2013), where the maintenance
cost of a power grid is optimized while keeping reliability
within specifications and costs within budget. However,
derating is only used to compensate deviations of hazard
rate of individual components within one system. Schedul-
ing maintenance based on current condition of a fleet of
systems, where maintenance actions might be conducted
on one or more systems at a time, but not on all, is not
considered.

Multiple systems are considered in Griffith et al. (2012).
A structural health monitoring approach to determine
damages to blades, i.e. cracks, of individual wind turbines
in a wind farm is combined with a maintenance program in
which damaged turbines are derated to slow crack growth,
while accepting a decrease in production. This way, the
overall production until maintenance is lower than for a
healthy turbine, but higher than for a non-derated turbine
failing early. However, the derating is not automated and it
is only designed as means to stop the evolution of existing
faults, not to determine suitable system behavior over the
whole lifetime.

Reliability-adaptive system operation allows for such an
automated adaptation according to current reliability.

3. RELIABILITY-ADAPTIVE OPERATION

The main requirement to allow for reliability-adaptive
operation, as it is introduced in Rakowsky (2005), is
to make system behavior dependent on current system
reliability. This can only be achieved if at first, the current
reliability is known and secondly if system behavior can be
changed during operation.

The field of reliability estimation is well researched with
many examples of successful online-estimation using e.g.
condition monitoring techniques. See e.g. Nandi et al.
(2005) for electrical motors, Lu et al. (2009) for wind
turbines or Jardine et al. (2006) for a general overview
focussed on methods suitable for condition-based mainte-
nance. Our approach builds on this but adds a behavior
adaptation control loop. The basic idea of closed loop
control has been introduced in Meyer et al. (2013a), but
an additional modification, which allows for more robust
control, was introduced in Meyer and Sextro (2014). Since
then, further modifications were conducted to facilitate
setup of the control loop while keeping its robustness. Due
to space constraints, these cannot be explained in detail,
but are used in the remainder of this paper. The basic
setup and behavior of the control loop is unchanged and
as published in Meyer and Sextro (2014).

This control loop is comprised of two stages: An inner
behavior adaptation loop and an outer reliability control
loop. The inner loop is based on the work done by Krüger
et al. (2013). System behavior is controlled by evaluating
current system objectives and setting a newly determined
working point accordingly. To determine suitable working
points, multiobjective optimization is used. Several pos-
sible points are obtained, from which the control algo-
rithm then chooses using a so-called α-parameterization.
Reliability can be controlled by including a reliability-
related objective in the multiobjective optimization prob-
lem. Then, the working point chosen is a trade-off among
reliability and other performance objectives, which are
impaired if reliability needs to be increased.

The reliability control loop does this by computing suit-
able values for the α-parameterization, which serves as
input to the lower behavior control loop, according to
currently desired remaining useful lifetime and currently
estimated remaining useful lifetime. As set point, a desired
remaining useful lifetime is required. This can be assumed
to be linearly falling with RULdes (t = 0) = 100% and
RULdes (t = tfailure) = 0%. However, this set point can
also be used to change system behavior. If the desired
lifetime tfailure is changed during operation, the setpoint
needs to be adapted accordingly, resulting in changed
system operation.

In prior publications on the same topic referenced herein,
a single plate dry clutch system was used as example.

4. APPLICATION EXAMPLE

In keeping with prior publications, the single plate dry
clutch system is re-used as application example. A clutch
system, as used in many automotive applications, was
chosen since it is a well known system of which one
component is wearing due to friction, and where the
interdepency of usage and wear directly affects system
lifetime. In Meyer et al. (2013a) it was shown that for
quick clutch engagement, low wear but high accelerations,
i.e. low comfort, is obtained, whereas for slower clutch
engagement the acceleration process is more comfortable,
but clutch wear is increased. The working point selected
is always a compromise between these two objectives and
can be changed at runtime, as for each actuation cycle, the
actuation trajectory can be selected individually. This way,
an adaptation of the behavior and in turn an adaptation
of the degradation is possible.

As wear is a mechanical abrasion process, it can be
modelled quite well. The basic outline of the clutch system
is shown in Fig. 1. Due to repeated usage, this introduction
is kept very brief. Those interested in further details are
asked to refer to Meyer et al. (2013a); Meyer and Sextro
(2014). The clutch system consists of two friction plates
with coefficient of friction µ, of which the input plate is
connected to the engine while the output plate is connected
to the driven system, e.g. a gearbox. To engage the clutch,
both plates are pressed against each other by the force
FN , thus transmitting torque from the input plate to the
output plate and in turn applying this torque to the driven
system.
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Fig. 1. Basic structure of clutch system.

The dominating failure mode is the inability to transmit
torque due to worn out clutch plates. Other failure modes,
e.g. actuator or sensor defects, broken mechanical parts or
failures in control units, are by far less probable and for
this reason are neglected entirely.

In Meyer et al. (2013a) it was shown that using multi-
objective optimization techniques, a control trajectory for
the actuation force FN (t) can be computed to actuate
the clutch system. The required objective functions are
included in a full model of system dynamics. For the clutch
system, objective functions are energy dissipated in clutch
system, which in turn corresponds to wear of clutch plates,
and comfort of vehicle passengers taking human perception
into account.

A model-based approach has been selected to estimate
the remaining useful lifetime of the friction plates. It is
based on an assumption as in Fleischer (1973) that clutch
plate wear is proportional to friction energy Ef . For each
actuation cycle i, wear wi is:

wi = wi−1 + pf ·∆Ef,i. (1)

For our test setup, the proportionality factor was deter-
mined to be pf = 4.37 ·10−4 mm

J for normal wear behavior.
Due to e.g. errors in manufacturing or materials, it might
deviate, thus requiring a changed operating point in order
to fulfill the specified lifetime. Remaining useful lifetime
can be modelled by taking wmax into account, which is
the known thickness of clutch plates.

5. RELIABILITY OF CLUTCH SYSTEM

In order to determine the effect that continuous control of
system behavior and system reliability has on actual sys-
tem reliability, simulations of the system model introduced
in Sect. 4 were used. As was shown, the main component
regarding reliability is the pair of clutch plates themselves.
With each actuation cycle, it wears according to (1).

It is now assumed that the coefficient of wear pf included
in (1) is individual for each pair of clutch plates, e.g. due to
manufacturing tolerances. For this, a normally distributed
perturbation factor z is introduced:

pf = z · pf,0,
z ∼ N (1, σ2

z)

with variance σz = 0.1 and pf,0 = 4.37 · 10−4 mm
J being

the nominal wear rate. Reliability of the full clutch system
was then evaluated by taking 200 samples of z and simu-
lating the full system lifetime for a system with reliability
controlled operation and for a basic system which uses a
fixed nominal working point.
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Fig. 2. Remaining useful lifetime of system with constant
working point or with reliability adaptive behavior
adaptation and resulting failure probability F (t).

The nominal working point was chosen such that for
z = 1, kdes = 220 cycles of usable lifetime were obtained.
The set point for the reliability-adaptive system was also
determined to give kdes = 220 cycles of usable lifetime.

For each sample of z, an individual lifetime was obtained,
as can be seen in Fig. 2. The mean time to failure for
systems with nominal working point is approximately the
same as for reliability controlled systems and it is close to
the desired lifetime. However, variance differs greatly.

Fig. 3 shows that for an arbitrary value of the perturba-
tion factor z, the resulting time to failure of the system
with static nominal working point is changed almost lin-
early. Thus for z being a normally distributed stochastic
variable, the resulting time to failure is approximately
normally distributed as well. However, for a reliability
controlled system, a small perturbation (approximately
z ∈ (0.8, 1.2)) is compensated for and a constant time to
failure is achieved. Only for very large deviations z � 1 or
z � 1, the time to failure is influenced as well. So despite
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Fig. 3. Relationship of perturbation factor to resulting
time to failure.
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Fig. 4. Experimentally achieved distribution of cycles until
failure of clutch system and fitted normal distribution.

a normally distributed perturbation factor z, the time to
failure is not normally distributed as well. Due to lack
of a suitable distribution function, time to failure of the
reliability controlled system is still assumed to be normally
distributed. As Fig. 4 shows, this is a pessimistic assump-
tion; normally distributed results would give less spot-on
results than were actually achieved. For this reason, it is
safe to use the normal probability distribution.

For further evaluations, it is necessary to schedule main-
tenance actions. A basic approach is to schedule these
based on a given system survival probability, which can be
chosen arbitrarily. If 5% of early failures can be tolerated,
the results shown in table 1 are achieved. The failure
probability along with times until maintenance are also
indicated in Fig. 2.

Table 1. Comparison of stochastic properties
of reliability controlled system and of system

with fixed nominal working point.

Reliability controlled Nominal working point

kdes 220 cycles 220 cycles
kMTTF 219.76 cycles 221.69 cycles
σ̂MTTF 2.98 23.95
k (F = 5%) 213.10 cycles 178.02 cycles

6. PETRI-NET MODEL FOR SYSTEM OPERATION

In order to assess the effect of reliability-controlled opera-
tion over long time spans, a reliability model is required.
An almost-exhaustive overview over suitable methods can
be found in Malek et al. (2007). While several established
methods such as Petri-nets can be used to model repairable
systems, they do not offer the possibility of interactions
among several systems and the maintenance scheme. De-
spite their evident shortcomings, Petri-nets were chosen as
state-of-the-art method for modelling repairable systems.

The Petri-net model as shown in Fig. 5 is based on
Schneeweiss (1992) and consists of two parts: an arbitrarily
chosen number of n = 8 clutch systems and one repair
team. The clutch systems Sys i are each modelled having
3 states: operating, in maintenance and failed. These are

1

1

1

P_Op

P_F

P_M

M_t

P_W

Sys_i

T_t

T_op

T_f

T_d T_n

Sys_nSys_i+1

Fig. 5. Petri-net model for repairable clutch system

represented by the places P Op, P M and P F in the Petri-
net model. T op is a timed transition parameterized to
fire after 29 cycles according to results from Sect. 5. The
transition T f contains the stochastic properties of each
clutch system, namely the normally distributed nominal
lifetime with certain variance according to table 1.

The part of the Petri-net model referencing the repair team
is located around the clutch system models and implies
the maintenance strategy for the fleet. In this strategy
the clutch systems under surveillance of the repair team
are ordered in series and thus prioritized according to the
availability of maintenance. This approach is necessary due
to prioritize arcs in Petri-nets in presence of a conflict
between more than one possible transitions. This leads to
a decreasing availability of the clutch systems remote in
the line of the repair team. The repair team is available
for the current clutch system in place M t for a short time
of 1 cycle defined in timed transition T n. It is assumed
that the repair team has only a brief look at each system
to detect a failure, which always takes the same time.

The Petri-net model is used to determine system reliability
for a fleet of n = 8 clutch systems as introduced in Sect. 4.
They are maintained by one repair team, that restores a
system in case of failure. The Petri-net model is evaluated
using the timed net evaluation tool TimeNET.

This approach is limited to evaluating static stochastic
properties such as mean time to failure of systems. With
reliability-adaptive systems, these might change for indi-
vidual systems or even for the full fleet of systems. It is
still suitable for validation of the more complex models
introduced in the following section.

7. LIFETIME-SIMULATIONS OF
RELIABILITY-ADAPTIVE SYSTEMS

To evaluate system reliability not only using stochastic
properties, but also including the feedback from main-
tenance planning to system behavior that reliability-
adaptive systems allow, a simulative approach is chosen. In
this, simulations of a basic model as introduced in Sect. 4
and in Meyer and Sextro (2014) are run. To compare
simulation accuracy to the Petri-net model introduced in
Sect. 6, both models were used with the same parameters.
If a failure occurs, and the repair team is available, the
system is restored to as-good-as-new condition. Repair
teams are accustomed to changing clutch plates, have all
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tools at hand, always order new spare parts in advance
and thus always require the same amount of time, which
is equivalent to precisely 29 cycles. After 10000 cycles,
a boundary value for availability can be estimated. The
theoretical threshold is Amax = MTTF

MTTF+MTTR with the
mean time to failure MTTF being the nominal lifetime,
i.e. 220 cycles, and the mean time to repair MTTR being
precisely 29 cycles. This gives Amax = 88.4%.

Table 2 shows a comparison of evaluation results from both
models. Results for systems with static nominal working
point were almost identical, while those for reliability
controlled systems differ. This is mostly due to divergence
of assumed probability distribution to real distribution of
failures. While in the Petri-net model normally distributed
parameters were assumed, this assumption does not take
the effect of reliability controlled operation into account.
With this, instead of having normally distributed times to
failure, most systems fail as specified with a low number
of systems reaching higher life times or failing early, as can
be seen in Fig. 4.

To further evaluate the gain of reliability controlled oper-
ation including an adaptive maintenance scheme, a fleet
of 56 clutch system models is simulated in parallel. A
basic maintenance strategy is implemented: If either a
system fails or if the pre-defined time until maintenance is
reached, and a maintenance team is available, the system
is restored to as-good-as-new conditions. Maintenance is
conducted on a first-come-first-serve basis. For both types
of systems, the time until maintenance is set to the 95%
survival threshold, i.e. 178 cycles for static systems and
213 cycles for reliability controlled systems.

In simulations, the fleet of 56 non controlled systems is
able to reach an availability of approx. 85.9%, while the
fleet of 56 reliability controlled systems is able to reach
88.0%. The simulated availability and the boundary values
are illustrated in Fig. 6. While this might not seem like a
big gain, the fleet of non controlled systems required the
usage of 8 maintenance teams for this, while the fleet of
controlled systems only required 7 teams.

This model does not make use of the possibility to adapt
system behavior to the current number of available main-
tenance teams, which would require a more sophisticated
maintenance strategy in the first place. This would need
to supervise all systems and create maintenance slots with
teams available to compensate for predicted early failures
by extending the lifetime of other systems. Deliberately
creating maintenance slots is possible by adapting desired
system lifetime to e.g. fail later, in turn leaving enough
time before failure for servicing of another system.

Table 2. Comparison of results from Petri-net
model and from simulation model.

Petri-net model Simulation model

Nominal working point

kMTTF 220 cycles 221.69 cycles
σ̂MTTF 23.95 23.95
Availability 80.15% 81.47%

Reliability controlled

kMTTF 220 cycles 221.69 cycles
σ̂MTTF 2.98 2.98
Availability 83.94% 85.17%
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Fig. 6. Availability of individual systems, of fleet of 56
reliability controlled systems and of fleet of 56 systems
with nominal working point.

8. ADVANTAGES AND CHALLENGES OF
RELIABILITY-CONTROLLED SYSTEM OPERATION

It was shown that using reliability-adaptive operation,
reliability of individual systems can be increased due to
lowering the variance of time to failure, while keeping the
mean time to failure approximately constant. This allows
prolonged maintenance intervals without increasing the
number of early failures. Availability of individual systems
and of a fleet of systems is improved. As application
example, a fleet of 56 reliability-controlled clutch systems
with dominating failure mode no torque transmitted due
to worn out clutch plates was used. In simulations, this
fleet could almost achieve the theoretically achievable
availability. Compared to systems operating at a fixed
nominal working point, a lower number of maintenance
teams was required.

Reliability adaptive systems offer new possibilities re-
garding maintenance planning, since behavior adaptation
driven by maintenance planning is not addressed in current
maintenance strategies. The approach presented within
this paper is not as sophisticated as possible and does
not take requirements of individual systems into account.
These could be, for example, extended maintenance inter-
vals to allow returning to the workshop, shortened mainte-
nance intervals due to changed requirements during usage
or prioritization of systems which, due to secondary prop-
erties, are more important than others. Close interaction
of maintenance planning, system degradation and system
behavior poses new challenges for modelling reliability.

The common approach is to evaluate stochastic proper-
ties of systems and to use these to construct a reliabil-
ity model of several systems including maintenance. This
fails if interactions from one system to another and from
maintenance plans to system behavior lead to changes in
stochastic properties, such as mean time to failure or the
number of early failures. In this paper, simulations are
used to cover these aspects. However, these required great
computing power 1 , are complex to setup and limited in

1 Each simulation in this paper required about 1000h of CPU time.
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interactions due to implementation complexity. Methods
that allow reliability evaluations of reliability-adaptive
systems would need to allow modelling system behavior,
system degradation and maintenance without the simu-
lative approach. While LARES was used successfully to
model adaptive systems (see Meyer et al. (2013b)), it is
currently limited to the limitations imposed by Markov
Chains. Several other projects such as AltaRica 2 seem to
be promising, yet most of these modelling techniques are
based on classification of the system into discrete states.
For reliability-adaptive systems, the classification proves
troublesome since it is in general not desirable to have
hard thresholds to distinguish whether a system is usable
or whether it fulfills certain requirements. Also system
behavior is not based on states, but instead on continuous
adaptation. Methods that allow for modelling of reliabil-
ity including continuous behavior, which are suitable for
modelling reliability-adaptive systems, are, to the best of
our knowledge, not yet available.

9. CONCLUSION

Using a clutch system as application example, it was shown
that reliability-adaptive system operation offers new ways
to increase system reliability and availability. For this, reli-
ability of classical systems with pre-defined static working
point were compared to reliability-adaptive systems using
a Petri-net model. Since this has some serious limitations,
an additional simulation model was implemented. It mod-
els a a fleet of clutch system models which are simulated
over a time span that covers multiple maintenance actions.
A basic maintenance strategy that makes use of the possi-
bilities of reliabilty-controlled operation was implemented
within this model. In these simulations, all individual sys-
tems were used alike and no priorities were implemented in
the maintenance strategy. The systems differed from one
another due to a stochastic model parameter, which affects
wear rate and leads to changed times to failure.

It can be observed that reliability-controlled system oper-
ation yields higher availability, while keeping mean time
to failure of all systems constant. This is mainly achieved
by using longer maintenance intervals, which are possible
without increasing the number of early failures. Due to the
complex interaction of all systems and the maintenance
strategy, current maintenance strategies are not suitable as
are current modelling techniques. Suggestions for further
work in the fields of maintenance planning and of mod-
elling techniques that allow these interactions are made.
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Krüger, M., Remirez, A., Kessler, J.H., and Trächtler,
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